Search results for "Electric transport"
showing 5 items of 5 documents
Computer Simulation of the Electric Transport Properties of the FeSe Monolayer
2020
The research has been supported by the grant of the Ministry of Education and Science of the Republic of Kazakhstan AP08052562. In addition, the research of AIP has been supported by the Latvian- Ukrainian Grant LV-UA/2018/2.
The emission reduction potential of electric transport modes in Finland
2021
The transportation sector has become the fastest growing source of greenhouse gas (GHG) emissions. One solution to mitigate the impacts is a shift towards electric modes. Where previous studies have only focused on the replacement of individual modes, our study presents a more holistic approach by comparing land-based, water-based and airborne transportation modes. We study the GHG emission reduction potentials of electric cars, buses, trains, ferries and aircraft in comparison to existing modes on 34 routes within Finland and across the Baltic Sea to Sweden and Estonia. By comparing the GHG emissions in carbon dioxide equivalents (CO2-eq) per passenger kilometer for each mode, we also cons…
Effect of Isovalent Substitution on the Thermoelectric Properties of the Cu2ZnGeSe4–xSx Series of Solid Solutions
2013
Knowledge of structure–property relationships is a key feature of materials design. The control of thermal transport has proven to be crucial for the optimization of thermoelectric materials. We report the synthesis, chemical characterization, thermoelectric transport properties, and thermal transport calculations of the complete solid solution series Cu_2ZnGeSe_(4–x)S_x (x = 0–4). Throughout the substitution series a continuous Vegard-like behavior of the lattice parameters, bond distances, optical band gap energies, and sound velocities are found, which enables the tuning of these properties adjusting the initial composition. Refinements of the special chalcogen positions revealed a chang…
Resolving the true band gap of ZrNiSn half-Heusler thermoelectric materials
2015
N-type XNiSn (X = Ti, Zr, Hf) half-Heusler (HH) compounds possess excellent thermoelectric properties, which are believed to be attributed to their relatively high mobility. However, p-type XNiSn HH compounds have poor figures of merit, zT, compared to XCoSb compounds. This can be traced to the suppression of the magnitude of the thermopower at high temperatures. E_g = 2eS_(max)T_(max) relates the band gap to the thermopower peak. However, from this formula, one would conclude that the band gap of p-type XNiSn solid solutions is only one-third that of n-type XNiSn, which effectively prevents p-type XNiSn HHs from being useful thermoelectric materials. The study of p-type HH Zr_(1−x)Sc_xNiSn…
ChemInform Abstract: Thermoelectric Transport in Cu7PSe6with High Copper Ionic Mobility.
2014
The copper ion conducting argyorite-type title compound is synthesized from the elements (evacuated quartz ampule, 1323 K, 3 h, and 773 K, 72 h) and its thermoelectric transport properties are studied.